arXiv:submit/4728843 [cs.LG] 8 Feb 2023

Noise2Music: Text-conditioned Music Generation with Diffusion Models

Qingqing Huang *' Daniel S. Park”! Tao Wang ' Timo I. Denk '! Andy Ly'' Nanxin Chen '
Zhengdong Zhang ' Zhishuai Zhang' Jiahui Yu' Christian Frank' Jesse Engel! Quoc V. Le'
William Chan?> Wei Han !

Abstract

We introduce Noise2Music, where a series of dif-
fusion models is trained to generate high-quality
30-second music clips from text prompts. Two
types of diffusion models, a generator model,
which generates an intermediate representation
conditioned on text, and a cascader model, which
generates high-fidelity audio conditioned on the
intermediate representation and possibly the text,
are trained and utilized in succession to gener-
ate high-fidelity music. We explore two options
for the intermediate representation, one using a
spectrogram and the other using audio with lower
fidelity. We find that the generated audio is not
only able to faithfully reflect key elements of the
text prompt such as genre, tempo, instruments,
mood, and era, but goes beyond to ground fine-
grained semantics of the prompt. Pretrained large
language models play a key role in this story—
they are used to generate paired text for the audio
of the training set and to extract embeddings of
the text prompts ingested by the diffusion models.

Generated examples:

https://google-research.github.io/noise2music

1. Introduction

Deep neural networks have been shown to have remarkable
generative ability. In this work, we explore the generative
capability of deep models for audio.

We introduce Noise2Music, a diffusion-based (Sohl4

Dickstein et al., 2015; [Song & Ermon| 2019; |[Ho et al.|
2020) method of generating music from text prompts and
demonstrate its capability by generating 30-second long
24kHz music clips.

Modeling: We train a series of cascading diffusion models

“Equal contribution T Core contributors ! Google Research >Work
done while at Google. Correspondence to: Qingqing Huang
<qqhuang@google.com>.

Preprint.

(Ho et al., [2022b)), where the first model learns the genera-
tive task of producing a compressed representation of a 30-
second waveform from a text prompt, and the second model
learns to generate a 16kHz waveform conditioned on the
compressed representation and optionally the text prompt.
We have investigated two options for the intermediate rep-
resentation: a log-mel spectrogram, or a 3.2kHz waveform.
1D U-Nets are used for learning the noise vectors for the
diffusion model. The diffusion models are conditioned on
user prompts in the format of free-form text, which are en-
coded by a pre-trained language model (LM) and ingested
by the 1D U-Net layers via cross attention. A final super-
resolution cascader is used to generate the 24kHz audio
from the 16kHz waveform.

Data mining: A large amount of training data is crucial
for producing high-quality samples from a deep generative
model. We employ a data mining pipeline to construct a
large-scale training dataset of diverse music audio clips,
each paired with multiple descriptive text labels. The text
labels for the audio are generated by employing a pair of pre-
trained deep models: first, we use a large language model to
generate a large set of generic music descriptive sentences
as caption candidates; we then use a pre-trained music-text
joint embedding model to score each unlabeled music clip
against all the caption candidates and select the captions
with the highest similarity score as pseudo labels for the
audio clip. We are able to annotate O(150K) hours of audio
sources this way to constitute our training data.

MuLaMCap: As a by-product of this work, we introduce
MuLan-LaMDA Music Caption dataset (MuLaMCap), con-
sisting of O(400K) music-text pairs obtained by annotating
the music content from AudioSet by the process described
above. Compared to the original AudioSet ontology, where
141 out of 632 label classes are music related, the captions
in MuLaMCap come from a large vocabulary consisting of 4
million music descriptive sentences and phrases, which have
a much higher degree of diversity and granularity. We ex-
pect this dataset to be utilized for applications beyond sound
classification, e.g., music captioning, retrieval or generation.

Evaluation: We measure the quality of our text conditioned
music generation model with two metrics: the Fréchet Audio
Distance (FAD) (Kilgour et al., [2018) which measures how

https://google-research.github.io/noise2music

Noise2Music

the quality of generated audio clips compare to that of two
benchmark datasets, e.g. the music split of AudioSet (Gem;
meke et al.|[2017) and MagnaTagATune (Law et al.,|2009);
and the MuLan similarity score (Huang et al.,[2022)) which
measures the semantic alignment between text prompts and
the corresponding generated audio clips.

Generative ability: Our models demonstrate that they
can go beyond simple music attribute conditioning, e.g.,
genre, instrument, era, and are able to handle complex
and fine-grained semantics which can reflect soft attributes
such as atmosphere, feeling or activity. This is achieved
by constructing a training dataset that not only relies
on the metadata tags, but that also leverages the pre-
trained music-text joint embedding model to ground the
semantics to audio features. Cherry-picked examples
of music generated from text prompts can be found in
google-research.github.io/noise2music#table- 1 and |google+
research.github.io/noise2music#table-4.

2. Related Work

Generative models: Deep generative models have a long
and successful history in a wide range of domains. More
recently, a significant amount of effort has been focused
toward scaling up the dataset size for training models
that can produce extremely high quality samples. Here
we compile an incomplete list of such recent develop-
ments in text (Brown et al.,|2020; Thoppilan et al., [2022),
speech (Wang et al., 2018;|Chen et al., 2021; Borsos et al.}
2022), images (Ramesh et al.,|2022;|Saharia et al.| 2022b;
Yu et al., 2022)), and audio (Briot, 2021} [Dhariwal et al.|
2020; MubertAl, 2022} [Kreuk et al. [2022).

Diffusion models: Diffusion models, introduced in (Sohl-
Dickstein et al.l [2015; |Song & Ermon, 2019; Ho et al.,
2020) have shown the capability to generate high quality
images (Ho et al., [2020; [2022b), audio (Yang et al., 2022
Popov et al.[[2021) and video (Ho et al.,[2022cfa). Cascaded
diffusion models (Ho et al., 2022b; |Saharia et al., 2022b),
which uses a series of diffusion models to generate a low-
fidelity image and refine the image in succession to produce
a high-fidelity image, has been adapted to audio in this work.

Audio generation: Various methods have been employed
to generate audio conditioned on external input. Some rel-
evant examples are provided in the context of the text-to-
audio task, in which text-conditioned spectrogram gener-
ation and spectrogram-conditioned audio has been inten-
sively studied (Popov et al., 2021 |Chen et al., 2021} |Kong
et al., 2021;|Wu & Shi, 2021} (Chen et al., 2022)). Restrict-
ing our attention to audio generation based on descriptive
text, text conditioned general sound event generation has
been approached with auto-regressive methods by Audio-
Gen (Kreuk et al., [2022) as well as diffusion-based methods

that operate on discrete audio codes by DiffSound (Yang
et al.,[2022)). If we narrow our scope to music generation,
Jukebox (Dhariwal et al.| 2020), Mubert (MubertAl 2022),
and MusicLM (Agostinelli et al., 2023) have taken an auto-
regressive approach, while Riffusion (Forsgren & Martiros),
2022) employed diffusion for spectrogram generation.

Conditional signals in audio generation: Broadly speak-
ing, two approaches have been taken on how the condi-
tional signal, which steers the model to generate a specific
style of music, is parameterized and communicated to an
audio generation model. One approach is to project the
signal to a pre-defined, interpretable embedding space—
Jukebox (Dhariwal et al.,|2020) relies on a fixed vocabulary
of artists and genres mined from the training data to condi-
tion the decoder, while Mubert (MubertAl, 2022) matches
the user prompt to a set of tags in a predefined vocabulary.
The other, taken by works such as AudioGen (Kreuk et al.}
2022) and MusicLM (Agostinelli et al.| [2023) is to use a
pre-trained text encoder to encode arbitrary user prompts.

Authors’ Note: During the completion of this work, concur-
rent research which has overlap with this work has appeared
(Schneider et al., [2023).

3. Methods
3.1. Diffusion models

Diffusion models (Sohl-Dickstein et al., 2015} |Song & Er-
mon, 2019; |Ho et al.,[2020) are powerful generative models
that generate a sample by iteratively denoising random noise.
Here we review the minimal amount of information on dif-
fusion models required for understanding our work. More
details can be found in the supplementary material.

The input to a diffusion model, which we consider to be a
generative model of some sample space, is the conditioning
signal c, a randomly sampled time step ¢ and a sample x;
obtained by corrupting the original sample x via a Gaussian
diffusion process with a noise schedule parameterized by
the standard deviation o of the noise at time ¢. The range of
time ¢ is set to be [0, 1], from which it is uniformly sampled
during training, and the diffusion is viewed to progress in
the direction of increasing time. The dynamics of Gaussian
diffusion are well understood—the distribution of x; is com-
pletely parameterized by a single noise vector € that belongs
to a standard normal distribution, as x; maybe written as
a function of the original sample, the deterministic noise
schedule, and the noise vector €, i.e., x;(x, o, €), where it
should be understood that o is used to denote the entire
noise schedule. The model €y is trained to identify the noise
vector given this input. The diffusion loss can be written as

Ex,c,e,t [U}tHEQ(Xt,C7t) - 6”2]) (1

where w; is a fixed weight function of choice.

https://google-research.github.io/noise2music#table-1
https://google-research.github.io/noise2music#table-4
https://google-research.github.io/noise2music#table-4

Noise2Music

Inference is carried out by taking random noise at time ¢ = 1
and denoising it by utilizing the noise predictions given by
the model. We use ancestral (or DDPM) sampling (Ho et al.|
2020), which provides a flexible framework for inference
allowing multiple parameters that can affect the quality
of the generated sample. First, the level of stochasticity
of the denoising process can be controlled by varying the
stochasticity parameter y of the sampler. Also, an arbitrary
denoising schedule can be used, where one may choose an
arbitrary partition of the interval 0 = ¢ < --- < ¢, = 1to
discretize the denoising steps.

Thus a variety of choices present themselves when one
wishes to train a diffusion model. We utilize multiple op-
tions with respect to the following elements, further details
of which can be found in the supplementary material:

* Loss weight (w;): simplified weight w; = 1 (Ho et al.|
2020) and sigma weight w; = o2

¢ Variance schedule: linear (Ho et al.| [2020) and cosine
(Nichol & Dhariwal, [2021)) schedules

* Stochasticity parameter: v = 0 or 1

* Denoising step schedule

Classifier-free guidance (CFG): CFG (Ho & Salimans)
2022)) is a method for improving the alignment between gen-
erated samples and conditional inputs. The conditional input
of a portion of the training samples in each training batch are
hidden from the network during training, enabling the net-
work to learn how to predict the noise vector unconditionally
and conditionally. At inference, the noise vector with and
without the conditional input are computed, and the final
noise vector applied is set to weg(x¢, ¢) + (1 — w)ep(x¢, -)
with w > 1. Dynamic clipping (Saharia et al., 2022b)) is
applied to avoid over-saturation due to CFG.

3.2. Architecture

We deploy the 1D Efficient U-Net, a one-dimension ver-
sion of the Efficient U-Net introduced in (Saharia et al.,
2022b)), for the diffusion model. The U-Net model, depicted
in Figure[I] consists of a series of down-sampling and up-
sampling blocks which are connected by residual connec-
tions. A down/up-sampling block consists of a down/up-
sampling layer followed by a series of blocks obtained by
composing 1D convolutional layers, self/cross-attention lay-
ers and combine layers. The combine layer enables a single
vector to interact with a sequence of vectors, where the sin-
gle vector is used to produce a channel-wise scaling and
bias. These blocks closely follow the structure of the blocks
of the efficient U-Nets constructed in (Saharia et al., 2022b),
with the two-dimensional convolutions replaced by their
one-dimensional counterparts. The exact structure of the
blocks are further elaborated in the supplementary material.

There are four possible routes of entry to the model. The
stacked input and output both consist of sequences of some
length 7', while the diffusion time ¢ is encoded into a single
time embedding vector and interacts with the model through
the aforementioned combine layers within the down and
up-sampling blocks. Given that we would like to produce a
sequence of length 7', the noisy sample x; is always part of
the stacked input on the left-most side of the figure, while
the output is interpreted as the noise prediction €. For the
cascading models, the low-fidelity audio on which the model
is conditioned on can be up-sampled and stacked. Mean-
while, a sequence of vectors with an arbitrary length may
interact with the blocks through cross-attention. This is the
route through which the text prompts are fed into the model.
There is also room for the model to be conditioned on an
aligned, but compressed representation of the sequence by
addition at the bottom of the “U” of the U-Net.

3.3. Cascaded diffusion

We train two kinds of diffusion models in this work to
produce high-quality 30-second audio from text prompts.
Following (Ho et al.| 2022b), we train generator models
that generate some intermediate representation of the final
audio conditioned on a text prompt, and cascader models
that produce the final audio based on the intermediate repre-
sentation. For the intermediate representation, we consider
both low-fidelity audio and spectrograms.

3.3.1. WAVEFORM MODEL

Generator Model: The generator model generates 3.2kHz
audio that is conditioned on the text input. A sequence of
vectors derived from the text input is produced and fed into
the network as a cross-attention sequence.

Cascader Model: The cascader model generates 16kHz
audio that is conditioned on both the text prompt and the
low-fidelity audio generated by the generator model based
on the text prompt. The text conditioning takes place via
cross attention. Meanwhile, the low-fidelity audio is up-
sampled and stacked with x; and fed into the model. The up-
sampling is done by applying fast Fourier transform (FFT) to
the low-fi audio sequence and then applying inverse FFT to
obtain the high-fi audio from the low-fi Fourier coefficients.

3.3.2. SPECTROGRAM MODEL

Generator Model: This model generates a log-mel spectro-
gram conditioned on the text input. The spectrgram has 80
channels and a frequency of 100 features per second. The
input and output sequences now have a channel dimension
in addition to the sequence dimension. The pixel values of
the log-mel spectrogram are normalized to lie within [—1, 1].
Text conditioning is achieved through cross attention.

Noise2Music

Cross Attention

Figure 1. U-Net architecture used for the diffusion models. A series of down-sampling, then up-sampling blocks is applied to the main
input sequence of length 7" to produce an output sequence of length 7". The outputs of the down-sampling blocks are added to the outputs
of up-sampling blocks via residual connections. There are four modes of inputs to the model. The first is the (possibly stacked) main input
of sequence length 7", entering on the left-hand side of the diagram. 7' is the target sequence length. Second, there is a time embedding
vector. Third, there can be a text embedding sequence that can be attended to by the down/up-sampling blocks via cross attention. Lastly,
there can be input of length T'/C that is aligned with the sequence of length T" with compression rate C.

Vocoder Model: The vocoder model generates 16kHz au-
dio that is conditioned only on the spectrogram, which is
treated as aligned input. The down and up-sampling rates of
the U-Net model are tuned to achieve the compression rate
of the spectrogram against the audio.

3.3.3. SUPER-RESOLUTION CASCADER

A final light-weight cascader is used to generate 24kHz
audio from the 16kHz waveform produced by either model.
The 16kHz audio is up-sampled and stacked with x; as input
to the model. Text conditioning is not used for this model.

3.4. Text understanding

It has been shown in the context of text-to-image diffusion
models (Saharia et al., [2022b; [Rombach et al., |2021}) that
powerful text encoders are able to capture the complex-
ity and compositionality of music descriptive text prompts.
We adopt the TS5 encoder (Raffel et al., [2020) and use the
non-pooled token embedding sequence as text prompt rep-
resentation to condition the diffusion models. A thorough
comparison with alternative contextual signals such as em-
beddings from different large language models, or a single
vector embedding derived from CLIP-like (Radford et al.}
2021) text encoders trained on music-text pairs (Huang et al.}
2022; |Manco et al.|[2022) is beyond the scope of this work.

3.5. Pseudo labeling for music audio

Having large scale training data is a necessary component
for ensuring the quality of generative deep neural networks.
For example, Imagen (Saharia et al.,[2022b) was trained on
O(1B) image-text pairs. Despite the fact that music content
is widely available, high quality paired music-text data is
scarce, especially in the case of free-form text that describes

the music attributes beyond high-level metadata such as title,
artist name, album name, and release year.

To generate such music-text pairs, we take a pseudo-labeling
approach via leveraging MuLan (Huang et al.| |2022), a
pre-trained text and music audio joint embedding model,
together with LaMDA (Thoppilan et al.|[2022)), a pre-trained
large language model, to assign pseudo labels with fine-
grained semantic to unlabeled music audio clips.

We first curate several music caption vocabulary sets, each
consisting of a large list of music descriptive texts. As
demonstrated below, these texts vastly differ from the cap-
tions from the label classes in standard music classification
benchmarks, e.g., MagnaTagATune, FMA, and AudioSet,
in their scale and the fine-grained semantic granularity. We
consider the following three caption vocabularies:

LaMDA-LF: We prime the large language model LaMDA
to describe a list of 150k popular songs provided the song
title and artist names. The precise prompt template is pro-
vided in the supplementary material. We then process the
LaMDA responses into 4 million clean long-form sentences
that are likely to be describing music. We use LaMDA as
our LM of choice because it is trained for dialogue appli-
cations, and expect the generated text to be closer to user
prompts for generating music.

Rater-LF: We obtain 10,028 rater written captions from
MusicCaps (Agostinelli et al.,[2023)), and split each caption
into individual sentences. This produces 35,333 music-
describing long-form sentences.

Rater-SF: From the same evaluation set above, we collect
all the short-form music aspect tags written by the raters,
which amounts to a vocabulary of size 23,906.

Examples of the caption vocabulary are presented in Table|[T]

Noise2Music

Table 1. Caption vocabulary examples.

Vocabulary Examples
LaMDA-LF “A l}ght, atmospheric drum groove provlqes a tr(?plcal feel.”,
M) ‘A light EDM drumbeat carries a bass guitar, strings,

a simple piano, and percussion in the background.”
Rater-LF “A Scottish tenor drum plays a marching beat.”
(35k) “A bass guitar with a punchy sound contrasts the guitar.”
Rater-SF “50’s pop”, “wide passionate male vocal”, “vintage vibes”,
(24k) “patriotic mood”, “vivacious cello”, “exercise music”

We use the MuLan model as a zero-shot music classifier to
assign captions from the vocabulary to unlabeled audio clips.
MuLan consists of a text encoder and an audio encoder,
which are trained on a large amount of highly noisy text-
music pairs with a contrastive learning scheme. Similar
to how CLIP (Radford et al.,[2021) co-embeds image and
text, a 10-second long music audio clip and a sentence that
describes the music are placed closely in the same semantic
embedding space learned by MuLan. For each audio clip,
we compute its audio embedding by first segmenting the clip
into non-overlapping 10-second windows, and computing
the average of the MuLan audio embeddings of each window.
The text embeddings of all the candidate captions in the
vocabulary are also computed. The top K captions that are
closest to the audio in the embedding space are selected for
each clip. We compute the frequency counts of the captions
among all clips, and for each clip further sample K’ out of
the K captions with probabilities inverse to the frequency
counts. This last sampling step serves to balance the label
distribution and increase the diversity of the captions. We
use K =10 and K’ = 3.

As a warm up for pseudo-labeling our large training set, we
produce MuLaMCap, a music captioning dataset derived
from the AudioSet (Gemmeke et al.| 2017), by applying
this pseudo-labeling method to 388,262 / 4,497 examples
from the AudioSet train / test sets which have labels in
the music subtree of AudioSet ontology. Each 10-second
audio with music content is associated with 3 captions from
the LaMDA-LF vocabulary, 3 captions from Rater-LF, and
6 short form captions from Rater-SF.

3.6. Training data mining

To assemble a large-scale collection of audio-text pairs, we
collect approximately 6.8M music audio source files. From
each soundtrack, we extract six non-overlapping 30-second
clips. This amounts to nearly 340k hours of music. Audio
is sampled at 24kHz for training the super-resoluton model
and 16kHz for training all other models.

For each soundtrack, we consider three types of noisy text
labels—the song title, named entity tags associated with
the soundtrack (e.g., genre, artist name, instrument), and
the pseudo labels. We use three pseudo labels from the

Table 2. Models trained in this work. The token length refers to
the token length of the text prompts at training time.

Model #Params # Training Token Loss Noise
steps length weight schedule
‘Waveform generator 724M 1.6M 64 Simplified ~ Cosine
‘Waveform cascader 487TM 460k 64 Simplified ~ Linear
Spectrogram generator 745M 1.8M 96 Sigma Linear
Spectrogram vocoder 25.M 840k - Simplified Linear
Super-resolution cascader 81M 270k Simplified Linear

LaMDA-LF vocabulary, and six pseudo labels from the
Rater-SF vocabulary. The pseudo labels from LaMDA-LF
and Rater-SF provide complementary information to the
named entity tags. Compared to the objective and high-
level tags, the pseudo labels include subjective descriptions
related to activity (“music for highway driving”) and mood
(“alaid back feel”), and also include compositional elements
with fine-grained semantics. Since we evaluate our model
on MusicCaps (Agostinelli et al.l [2023) from which the
sentences of Rater-LF were derived, we exclude any pseudo
labels from the Rater-LF vocabulary from our training data.

We include a small amount of high-quality audio to the
large pseudo-labeled training set. The audio is taken from a
subset of music tracks, which does not require attribution,
from an internally maintained music library. The music
tracks are segmented to non-overlapping 30-second clips,
while the metadata of the tracks are concatenated to form
the text prompt of the audio. This contributes O(300) hours
of annotated audio to our training data.

4. Experiments and Results
4.1. Model training details

We train four 1D U-Net models, the waveform generator and
cascader, and the spectrogram generator and vocoder for this
work. We have summarized some basic information about
the models in Table[2] while we relegate further details about
the models to the supplementary material. We note that we
found the sigma-weighted loss, which weighs the loss more
heavily on the “back end” of the denoising schedule, crucial
for convergence of the spectrogram generator.

All the models, with the exception of the vocoder, are trained
on audio-text pairs, while the vocoder is only trained on au-
dio. For each audio sample, a text batch is formed. The
three long prompts constitute three independent elements of
the text batch, while the shorter prompts are concatenated,
then segmented into a set token length reported in Table 2]
and added to the text batch. For each audio clip, a random el-
ement of the corresponding text batch is selected at training
time and fed to the model as the paired text to the audio.

The models are trained with Adam optimization with 5; =
0.9 and By = 0.999. A cosine learning rate schedule with
the end point set to 2.5 M steps is used with peak learning

Noise2Music

Table 3. Inference parameters for the models used in this work.

Model Denoising Stochasticity CFG scale
step schedule parameter

Waveform generator Front-heavy 0 10.0

Waveform cascader Front-heavy 1 5.0

Spectrogram generator Back-heavy 0 5.0

Spectrogram vocoder Front-heavy 0 N/A

Super-resolution cascader ~ Front-heavy 0 N/A

rate le-4 and 10k warm-up steps. An exponential moving
average (EMA) of the model parameters are taken with
decay rate 0.9999 and used at inference time. The super-
resolution cascader is trained with batch size 4096, while
all other models use batch size 2048. To apply CFG at
inference time, we occlude the text prompts for 10% of
the samples in each training batch. For these samples, the
output of the cross attention layers are set to zero.

While the generator models use self-attention, the cascaders
and vocoder do not. Thus while we need to train the gen-
erator models on the entire 30-second representation of the
audio, the cascader and vocoder models are trained on 3 to
4-second randomly sampled snippets.

Following (Ho et al.| 2022b), two augmentations are applied
at training time for the cascader/vocoder models. One is to
randomly corrupt the conditioning low-fidelity audio or the
spectrogram input by applying diffusion noise. To do so, a
random diffusion time is chosen within [0, #1,x] and applied
to the intermediate representation of the audio, i.e., the up-
sampled low-fi audio or the spectrogram. For the cascader
tmax 18 set to 0.5 while for the vocoder and super-resolution
cascader it is set to 1.0. The other is blur augmentation. For
the cascader model, a 1D blur kernel of size 10 is used with a
Gaussian blur kernel whose standard deviation ranges from
0.1 to 5.0. For the vocoder model, a 2D 5x5 blur kernel is
applied with the standard deviation ranging from 0.2 to 1.0.

4.2. Model inference and serving
4.2.1. MODEL INFERENCE

We adjust three inference hyperparameters, the denoising
schedule, the stochasticity parameter, and the CFG scale.
The parameters used for each model are listed in Table 3]

We parameterize the denoising step schedule by the time
step sizes [0y, -+ ,dn] that translate into denoising steps
introduced in section [3.1|via accumulation: ¢, = Y., &,.
The inference cost is proportional to the number of time-
steps. Thus optimizing the time step schedule with a fixed
inference cost amounts to distributing a fixed number of time
steps that add up to the total time, 1. The parameter space for
the denoising step schedule is extremely large. Nevertheless,
we experiment with three different kinds of schedules we
denote “front-heavy,” “uniform,” and “back-heavy.” The
front-heavy schedule allots many steps to the “front” of the

Table 4. Inference time cost on four TPU V4 for four samples.

Model time/step (ms) steps time (s)
Waveform generator 25.0 1000 25.0
‘Waveform cascader 75.0 800 60.0
Spectrogram generator 8.3 1000 8.3
Spectrogram vocoder 29.9 100 0.3
Super-resolution cascader 71.7 800 57.3

schedule near ¢ = 0 whereas the “back-heavy” schedule
expends more steps near ¢ = 1. The uniform schedule uses
evenly-spaced time steps. The exact schedules used are
produced in the supplementary material.

4.2.2. MODEL SERVING

We serve the models on Google Cloud TPU V4, where each
service request generates four 30-second music clips. We
apply GSPMD (Xu et al.| 2021) to partition the model on
four TPU V4 devices, reducing the serving time by more
than 50%. Table @] shows the inference time cost when the
model is served on four TPU V4 to produce four samples.

4.3. Evaluation
4.3.1. PARAMETER SELECTION FOR THE MODELS

Model parameters, including the architecture, training hy-
perparameters, checkpoints and inference parameters are
selected in a heuristic fashion. A small set of dev prompts,
independent of the prompts in any of the evaluation sets
presented, are devised by the authors, which are used to gen-
erate audio from the trained models. Model parameters are
selected based on the quality of the generation results, evalu-
ated according the judgement of the authors, as well as prac-
tical limitations such as the availability of computational
resources and time. Evaluations are conducted on 16kHz
waveforms—the super-resolution cascader is not utilized to
generate waveforms for producing evalution metrics.

4.3.2. EVALUATION METRICS

We measure the quality of our text conditioned music gener-
ation model with two kinds of metrics: the Fréchet Audio
Distance (FAD) (Kilgour et al.|[2018) and the MuLan simi-
larity score (Huang et al., 2022).

FAD measures how the audio quality of the generated audio
examples compare to that of a set of reference audio clips.
In particular, an audio encoder is used to compute the audio
embeddings of both the set of generated audio examples
and the background audio clips in the evaluation dataset.
Assuming that the distribution of the embeddings from each
set are Gaussian, and the Freéchet distance between the
two distributions are computed from the mean embedding
vectors and the correlation matrix of the two sets.

Three audio encoders are utilized for computing the FAD

Noise2Music

metric: a VGG'| audio event embedding model (Hershey
et al.,[2017)) trained on YouTube-8M (Abu-El-Haija et al.|
2016); the Trill (Shor et al., [2020) modeﬂ a convolutional
speech representation learning model trained on speech con-
taining clips from AudioSet; and the MuLan audio encoder.
VGG and Trill produce frame-wise embeddings while Mu-
Lan’s embeddings are clip-wise. Since the audio encoders
are trained on different datasets and tasks, FAD computed
with those audio representations focus on different aspects
of the audio. We hypothesize that FADygg evaluates the
general audio quality, FADry is more indicative of the vocal
quality, and FADy1an captures global musical semantics.

The contrastive model MuLan provides us a way to quantify
the similarity between audio-text pairs as well as audio-
audio pairs. For a given text-audio or audio-audio pair,
we define the MuLan similarity as the cosine similarity
between the MuLan embeddings of the two entities. For
a given evaluation set of music-text pairs, we compute the
average similarity between the audio generated from the
text prompts of the dataset and either the text or the ground
truth audio associated to the text. As a reference, we also
compute the average MuLan similarity of the evaluation set
against the ground truth audio, as well as a “random” audio
pairing obtained by shuffling the ground truth audio.

4.3.3. EVALUATION DATASETS

We report the FAD and MuLan similarity with respect to
the following three datasets consisting of text-music pairs.

First, we re-purpose the audio tagging benchmarks Mag-
naTagATune (MTAT) (Law et al., | 2009) to evaluate the 29-
second long music clips generated by our models. MTAT
contains 25,863 music clips, 21,638 of which are associated
with multiple tags from a vocabulary of 188 music tags. We
only utilize these 21,638 examples for evaluation, for each
of which we concatenate the music tags with into a single
string that we use as the associated text prompt. During
evaluation, we generate a single 29-second long audio clip
for the prompt associated with each of the 21,638 examples.

Second, we use AudioSet-Music-Eval, the music portion of
AudioSet (Gemmeke et al., [2017)). There are 1,482 music
related examples in the evaluation split of AudioSet, where
each 10-second clip is associated with labels from the non-
trivial part of the music subtree of AudioSet ontology. For
each example in this set, we use the concatenated labels
as the text prompt to generate a 30-second long clip, the
middle 10-second portion of which is used for evaluation.

Lastly, we evaluate on MusicCaps (Agostinelli et al.
2023) which consists of 5.5K 10-second clips from Au-
dioSet paired with rater written captions. We use the rater

Itfhub.dev/google/vggish/1
2tfhub.dev/google/nonsemantic-speech-benchmark/trill/3

Table 5. The FAD between the reference dataset audio and the
generated audio with prompts from the reference dataset. Three
audio encoders, VGG, Trill and MuLan have been used to measure
FAD. A lower value indicates better proximity of quality.

Dataset/Model FADygg FADyin FADyuran
MusicCaps (Agostinelli et al.{[2023)
Riffusion (Forsgren & Martiros|[2022) 13.371 0.763 0.487
Mubert (MubertAl![2022) 9.620 0.449 0.366
MusicLM (Agostinelli et al.|2023) 4.0 0.44 -
Noise2Music Waveform 2.134 0.405 0.110
Noise2Music Spectrogram 3.840 0.474 0.180
AudioSet-Music-Eval
Noise2Music Waveform 2.240 0.252 0.193
Noise2Music Spectrogram 3.498 0.323 0.276
MagnaTagATune
Noise2Music Waveform 3.554 0.352 0.235
Noise2Music Spectrogram 5.553 0.419 0.346

captions as text prompts, and report the metrics with the
middle 10-second excerpts of the generated audio samples.

4.4. Evaluation results

In Table [5] we report the FAD of our models on the three
evaluation datasets, and compare them with baseline models
from Riffusio and Muber In Table @ we report the
average audio-text and audio-audio MuLan similarity scores
between the generated audio and the evaluation datasets.
We also include the metrics computed for the ground truth
audio, as well as the shuffled ground truth.

The evaluation metrics should be interpreted with care, since
our result has potential advantages over the baselines pre-
sented. First, there is a possibility that our training data
distribution is closer to the evaluation datasets compared
to the baselines. Also, one may suspect that the MuLan-
based metrics might be biased towards our models, since the
MuLan model has been used to pseudo-label our data. The
reader should thus be cautious to draw conclusions about the
effectiveness of the methods used in this paper compared
to those of the baselines based on these metrics. The met-
rics, however, are indeed representative of the performance
of the trained models themselves in the AudioSet domain
and provides a quantitative measure of final model perfor-
mance. This ideally should hold true for the MuLan-based
metrics as well, if we assume that the MuLan model, much
like CLIP (Radford et al.,[2021)), has learned an un-biased,
faithful representation of text and audio data.

3We query Mubert API at|github.com/MubertAl as of Dec 24,
2022 to generate 10-second audio clips given the text prompts in
the evaluation datasets.

*We ran inference with riffusion-model-vl provided by
github.com/riffusion/riffusion-app as of Dec 24, 2022 to gener-
ate 10-second audio clips.

https://tfhub.dev/google/vggish/1
https://tfhub.dev/google/nonsemantic-speech-benchmark/trill/3
https://github.com/MubertAI
https://github.com/riffusion/riffusion-app

Noise2Music

Table 6. The average MuLan similarity between the generated au-
dio and either the text prompt or the ground truth audio for each
evaluation set. A higher value indicates better semantic alignment.

Dataset/Model audio <> gt-text audio <> gt-audio
MusicCaps (Agostinelli et al.|{2023)
Ground Truth Audio 0.452 (1.000)
Randomly Shuffled Audio 0.248 0.278
Riffusion (Forsgren & Martiros)2022) 0.342 0.312
Mubert (MubertAll2022) 0.323 0.280
MusicLM (Agostinelli et al.||2023) 0.51 -
Noise2Music Waveform 0.478 0.489
Noise2Music Spectrogram 0.434 0.464
AudioSet-Music-Eval
Ground Truth Audio 0.470 (1.000)
Randomly Shuffled Audio 0.274 0.265
Noise2Music Waveform 0.563 0.429
Noise2Music Spectrogram 0.490 0.389
MagnaTagATune
Ground Truth Audio 0.498 (1.000)
Randomly Shuffled Audio 0.277 0.315
Noise2Music Waveform 0.518 0.479
Noise2Music Spectrogram 0.459 0.444

4.5. Inference parameter ablations

We vary inference parameters of the models and observe
its effects. We note that we have conducted ablations with
model checkpoints that are slightly less-trained compared to
the checkpoints used to produce the evaluation numbers in
the previous subsection. The ablations are conducted with
respect to the base parameters as listed in Table 3]

Generator CFG

£ 045 \ 0.48 }//”777

~. "~
35 0.47 =

2z
&
Eoaw R ! ~_
()
<
&
3
E}
s

Cascader CFG

~

2 3 4 5 6 20 21 22 23 24

Generator Schdeule Cascader Schedule

0.46

0.44

% 0.44 0.42 ~
pl —=— Waveform model B
S 043 0.40
s Spectrogram model) -
0.42
20 25 30 35 40 45 2 4 6 8 10
FAD (VGG)

FAD (VGG)

Figure 2. We plot how FADvgg and the MuLan similarity score
vary as inference parameters are adjusted. The CFG parameters
take values from [1, 2, 5, 10, 15], while “B”ack-heavy, “U”niform
and “F’ront-heavy denoising step schedules have been applied.

In Figure |2} we depict how FAD measured with VGG and
the MuLan similarity score change as the denoising step
schedule and the CFG scale are varied during inference.
Only one parameter is varied at a time, and all other param-
eters stay fixed at the baseline values.

We find an overall correlation between the FAD metric and
the similarity score, except in the case of the cascader, where
FAD can get worse while the similarity score improves. We
also find that there is an optimal CFG scale, and too big
of a CFG scale hurts the generation quality. It can also be

seen that the generator CFG scale is a bigger factor than
the denoising schedule of the generator, while the impact of
cascader denoising schedule is extremely large.

Generator Cost Variation Cascader/Vocoder Cost Variation

—=— Waveform Model
Spectrogram Model

®35
=30 30

25

20 —— 20 \

9 60 80 100 S0 75 100 125 150
047 -
0.46

40 60 80 100 50 75 100 125 150
Inference time (sec) Inference time (sec)

|

=
3

MulLan Similarity
©c o o © o
= =
2 &

=
&

Figure 3. Quality metrics of the generated examples plotted against
computational cost parameterized by inference time.

4.6. Inference cost and performance

In Figure[3] we plot the quality metrics against the inference
cost measured by the inference time. We reduce/increase
the number of inference steps of the generator or the cas-
cader/vocoder and inverse-proportionally scale the step sizes
in the inference schedule. We find that the effect of in-
creasing the inference cost of the generator is mixed while
the generative quality generally improves with more cas-
cader/vocoder inference steps.

S. Qualitative analysis

Content representation: We present generation examples
at|google-research.github.io/noise2music#table-2, to illus-
trate that the model is able to ground the music aspects
represented in the text prompt. In particular, we find that
the genre, instrument, mood, vocal traits, and era of music
implied in the text is manifested in the generated music.

Creative prompts: While our models often struggle to pro-
duce high quality audio from out-of-distribution prompts,
they are nevertheless able to generate some interesting ex-
amples. In google-research.github.io/noise2music#table-3,
we have collected examples of creative prompts for which
the model was able to generate quality music.

6. Discussion

Spectrogram vs. waveform approach: The spectrogram
and waveform approaches have their comparative advan-
tages. The spectrogram models employed in this work are
much cheaper to train and serve compared to the wave-
form models, and are more scalable in time length. This
is because the sequence length of the spectrogram is much
shorter than that of a low-fi waveform. In addition, the
spectrogram contains high-frequency information which is

https://google-research.github.io/noise2music#table-2
https://google-research.github.io/noise2music#table-3

Noise2Music

missing in the low-fidelity audio. Meanwhile, the waveform
model produces interpretable representations at every step
of the generation process, making the model easy to debug
and tune. This is partially responsible for our ability to train
the waveform models with more ease.

Future directions: While we have demonstrated the poten-
tial of text prompt based music generation, there is much
room for improvement beyond our work. Increasing model
interpretability, further improving text-audio alignment, re-
ducing training and inference cost, and scaling up the gener-
ation length of the audio are just a few directions in which
our work needs to be improved. Another interesting direc-
tion is to fine-tune the models trained in this work for diverse
audio tasks including music completion and modification,
as was done for images by Saharia et al.| (2022a)).

7. Broader Impact

We believe our work has the potential to grow into a useful
tool for artists and content creators that can further enrich
their creative pursuits. To live up to this promise, more work
is needed with musicians and other stakeholders to develop
models into a meaningful co-creation tool.

We acknowledge the limitations of the proposed model. In
particular, large generative models learn to imitate patterns
and biases inherent in the training sets, and in our case, the
model can propagate the potential biases built in the text and
music corpora used to train our models. Such biases can be
hard to detect as they manifest in often subtle, unpredictable
ways, which are not fully captured by our current evaluation
benchmarks. Demeaning or other harmful language may be
generated in model outputs, due to learned associations or
by chance.

Beyond this, we recognize that musical genres are complex
and key musical attributes are contextual and change over
time. Training data reflect a limited corpus of musical sam-
ples and genres, given uneven recording and digitization of
samples from global musical cultures. How music is catego-
rized and labeled can essentialize genres; and these labels
may be constructed and applied without the participation
of communities. When readers examine the released gen-
eration examples in the accompanied website, we caution
readers not to presume each sample can generalize to an
entire musical genre or one label can capture the diversity of
musical genres produced within a region (i.e. “Latin music”
contains a broad range of cultures and styles). Moreover,
musical samples may sound “authentic” to those outside
these communities, as nuances in musical traditions need
trained ears/cultural knowledge to recognize. In generating
vocals, there may be possible caricatures, 1 1mock accents,”
parodies, or other demeaning linguistic harms (e.g., “mock
Black singing” in a request for “soulful vocals” or “mock

Spanish” in a Latin music request) that arise in text prompts
requesting cultural or religious musical genres, or genres
that emerged as part of the political struggles of certain
communities (e.g., Black American music, Nueva cancion,
Chicano folk, Brazilian Tropicalismo, Sufi Qaw).

As is with any other technology, the result of our research
can be misused or abused. We acknowledge the risk of
potential misappropriation when the created content exactly
matches examples in training data. In accordance with re-
sponsible model development practices, duplication checks
are a built-in part of our current pipeline of producing and
releasing examples, and will continue to be for any future
work.

Efforts for identifying potential safety issues and addressing
them are important components for improving these genera-
tive models. Until there is a more clear understanding of the
limitations and risks, we do not intend to release the model.

Acknowledgements

We are grateful to Aren Jansen for building MuLan, which is
an indispensable component of this project. We give thanks
to Austin Tarango, Fernando Diaz, Kathy Meier-Hellstern,
Molly FitzMorris, and Renee Shelby for helping us incorpo-
rate important responsible Al practices around this project.
We acknowledge support from Blake Cunningham, Cara
Adams, for giving us advice along the project and assisting
us with the publication process. We appreciate valuable
feedback and support from Alex Ku, Andrea Agostinelli,
Ankur Bapna, Chen Liang, Ed Chi, Ekin Dogus Cubuk, Er-
ica Moreira, Esteban Real, Heiga Zen, Jaechoon Lee, James
Qin, Nathan Park, Stephen Kelly, Thang Luoung, Weizhe
Hua, Ye Jia, Yifeng Lu, Yonghui Wu, Yu Zhang, Yuma
Koizumi. Special thanks to authors of MusicLM for helpful
discussions and cooperation, and especially for sharing their
evaluation set and manuscript before publication.

References

Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici,
G., Varadarajan, B., and Vijayanarasimhan, S. Youtube-
8m: A large-scale video classification benchmark, 2016.
URL https://arxiv.org/abs/1609.08675.

Agostinelli, A., Denk, T. 1., Borsos, Z., Engel, J., Verzetti,
M., Caillon, A., Huang, Q., Jansen, A., Roberts, A.,
Tagliasacchi, M., Sharifi, M., Zeghidour, N., and Frank,
C. Musiclm: Generating music from text. arxiv preprint
arxiv:2301.11325, 2023.

Borsos, Z., Marinier, R., Vincent, D., Kharitonov, E.,
Pietquin, O., Sharifi, M., Teboul, O., Grangier, D.,
Tagliasacchi, M., and Zeghidour, N. Audiolm: a lan-

https://arxiv.org/abs/1609.08675

Noise2Music

guage modeling approach to audio generation, 2022. URL
https://arxiv.org/abs/2209.03143\

Briot, J.-P. From artificial neural networks to deep learning
for music generation: history, concepts and trends. Neural
Computing and Applications, 33(1):39-65, 2021.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.

Advances in neural information processing systems, 33:
1877-1901, 2020.

Chen, N., Zhang, Y., Zen, H., Weiss, R. J., Norouzi, M., and
Chan, W. Wavegrad: Estimating gradients for waveform
generation. In International Conference on Learning
Representations, 2021.

Chen, Z., Tan, X., Wang, K., Pan, S., Mandic, D., He, L.,
and Zhao, S. Infergrad: Improving diffusion models for
vocoder by considering inference in training. In /CASSP
2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 8432-8436.
IEEE, 2022.

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A.,
and Sutskever, 1. Jukebox: A generative model for music.
arXiv preprint arXiv:2005.00341, 2020.

Forsgren, S. and Martiros, H. Riffusion - Stable diffusion
for real-time music generation. 2022. URL https:
//riffusion.com/about!

Gemmeke, J. F.,, Ellis, D. P,, Freedman, D., Jansen, A.,
Lawrence, W., Moore, R. C., Plakal, M., and Ritter, M.
Audio set: An ontology and human-labeled dataset for
audio events. In 2017 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pp.
776-780. IEEE, 2017.

Hershey, S., Chaudhuri, S., Ellis, D. P. W., Gemmeke, J. F,,
Jansen, A., Moore, C., Plakal, M., Platt, D., Saurous,
R. A., Seybold, B., Slaney, M., Weiss, R., and Wilson,
K. Cnn architectures for large-scale audio classification.
In International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2017. URL https://
arxiv.org/abs/1609.09430.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
arXiv preprint arXiv:2207.12598, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 33:6840-6851, 2020.

Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko,
A., Kingma, D. P, Poole, B., Norouzi, M., Fleet, D. J.,
et al. Imagen video: High definition video generation

with diffusion models. arXiv preprint arXiv:2210.02303,
2022a.

Ho, J., Saharia, C., Chan, W., Fleet, D. J., Norouzi, M., and
Salimans, T. Cascaded diffusion models for high fidelity
image generation. J. Mach. Learn. Res., 23:47-1, 2022b.

Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M.,
and Fleet, D. J. Video diffusion models. arXiv preprint
arXiv:2204.03458, 2022c.

Huang, Q., Jansen, A., Lee, J., Ganti, R., Li, J. Y., and
Ellis, D. P. W. Mulan: A joint embedding of music audio
and natural language. In Proceedings of the the 23rd
International Society for Music Information Retrieval
Conference (ISMIR), 2022.

Kilgour, K., Zuluaga, M., Roblek, D., and Sharifi,
M. Fr\’echet audio distance: A metric for evaluat-
ing music enhancement algorithms. arXiv preprint
arXiv:1812.08466, 2018.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B.
Diffwave: A versatile diffusion model for audio synthesis.

In International Conference on Learning Representations,
2021.

Kreuk, F., Synnaeve, G., Polyak, A., Singer, U., Défossez,
A., Copet, J., Parikh, D., Taigman, Y., and Adi, Y. Audio-
gen: Textually guided audio generation. arXiv preprint
arXiv:2209.15352, 2022.

Law, E., West, K., Mandel, M. L., Bay, M., and Downie, J. S.
Evaluation of algorithms using games: The case of music
tagging. In ISMIR, pp. 387-392, 2009.

Manco, 1., Benetos, E., Quinton, E., and Fazekas, G. Con-
trastive audio-language learning for music, 2022. URL
https://arxiv.org/abs/2208.12208.

MubertAl. https://github.com/mubertai/mubert-text-to-
music. 2022.

Nichol, A. Q. and Dhariwal, P. Improved denoising diffusion
probabilistic models. In International Conference on
Machine Learning, pp. 8162-8171. PMLR, 2021.

Popov, V., Vovk, 1., Gogoryan, V., Sadekova, T., and Kudi-
nov, M. Grad-tts: A diffusion probabilistic model for
text-to-speech. In International Conference on Machine
Learning, pp. 8599-8608. PMLR, 2021.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural

language supervision. In International Conference on
Machine Learning, pp. 8748-8763. PMLR, 2021.

https://arxiv.org/abs/2209.03143
https://riffusion.com/about
https://riffusion.com/about
https://arxiv.org/abs/1609.09430
https://arxiv.org/abs/1609.09430
https://arxiv.org/abs/2208.12208

Noise2Music

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., Liu, P. J., et al. Exploring
the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1-67, 2020.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents. arXiv preprint arXiv:2204.06125, 2022.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models, 2021.

Saharia, C., Chan, W., Chang, H., Lee, C., Ho, J., Salimans,
T., Fleet, D., and Norouzi, M. Palette: Image-to-image
diffusion models. In ACM SIGGRAPH 2022 Conference
Proceedings, pp. 1-10, 2022a.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E., Ghasemipour, S. K. S., Ayan, B. K., Mahdavi, S. S.,
Lopes, R. G., et al. Photorealistic text-to-image diffusion
models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022b.

Schneider, F., Jin, Z., and Scholkopf, B. Mofsai: Text-
to-music generation with long-context latent diffusion,
2023.

Shor, J., Jansen, A., Maor, R., Lang, O., Tuval, O., de Chau-
mont Quitry, F., Tagliasacchi, M., Shavitt, I., Emanuel,
D., and Haviv, Y. Towards Learning a Universal Non-
Semantic Representation of Speech. In Proc. Interspeech
2020, pp. 140-144, 2020. doi: 10.21437/Interspeech.
2020-1242.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference on
Machine Learning, pp. 2256-2265. PMLR, 2015.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. Advances in Neural
Information Processing Systems, 32, 2019.

Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kul-
shreshtha, A., Cheng, H.-T., Jin, A., Bos, T., Baker, L.,
Du, Y., et al. Lamda: Language models for dialog appli-
cations. arXiv preprint arXiv:2201.08239, 2022.

Wang, Y., Stanton, D., Zhang, Y., Ryan, R.-S., Batten-
berg, E., Shor, J., Xiao, Y., Jia, Y., Ren, F., and Saurous,
R. A. Style tokens: Unsupervised style modeling, control
and transfer in end-to-end speech synthesis. In Interna-
tional Conference on Machine Learning, pp. 5180-5189.
PMLR, 2018.

Wu, S. and Shi, Z. It\" otts and it\" owave: Linear stochastic
differential equation is all you need for audio generation.
arXiv preprint arXiv:2105.07583, 2021.

Xu, Y., Lee, H., Chen, D., Hechtman, B. A., Huang, Y.,
Joshi, R., Krikun, M., Lepikhin, D., Ly, A., Maggioni, M.,
Pang, R., Shazeer, N., Wang, S., Wang, T., Wu, Y., and
Chen, Z. GSPMD: general and scalable parallelization for
ML computation graphs. CoRR, abs/2105.04663, 2021.
URL https://arxiv.org/abs/2105.04663.

Yang, D., Yu, J., Wang, H., Wang, W., Weng, C., Zou, Y.,
and Yu, D. Diffsound: Discrete diffusion model for text-
to-sound generation. arXiv preprint arXiv:2207.09983,
2022.

Yu, J., Xu, Y., Koh, J. Y., Luong, T., Baid, G., Wang, Z.,
Vasudevan, V., Ku, A., Yang, Y., Ayan, B. K., et al. Scal-
ing autoregressive models for content-rich text-to-image
generation. arXiv preprint arXiv:2206.10789, 2022.

https://arxiv.org/abs/2105.04663

Noise2Music

A. Diffusion models

In this section, we review some relevant information for diffusion models and set up the notation used in the main text of the
paper. We follow (Saharia et al.||2022b)) in our presentation.

A diffusion model assumes a set-up where a sample x from a distribution corrupted by a Gaussian diffusion process with a
noise schedule, represented by a monotonically increasing standard deviation o, at time t. More precisely, the distribution
for the corrupted sample x; at time ¢ conditioned on x or X, for s < ¢ is given by:

q(x¢|x) = N(aix,07T), q(xtxs) = N((ar/as)xs, 07,1) - ()

We can define a set of variables that will make the equations cleaner:
ar=1/1—0?, X\ =In(a?/o?), Ufls =(1—eM g2, &glt = (1 —eMP)o2. (3)

The time variables s and ¢ are assumed to be in the range [0, 1].

As seen in the first equation, the randomness of the corrupted sample x; is encoded in a single noise vector € ~ A(0, I).
The aim of the diffusion model is to model this noise vector, given the corrupted sample, the time ¢ and the context c:
€9 (Xta c, t)

Once the model is trained, we sample noise at time ¢ = 1, i.e., 1 ~ N (0, I), and reverse the diffusion process to produce a
“clean” sample x(from the original distribution. We employ ancestral (or DDPM) sampling (Ho et al.| 2020) to do so. In
this sampling method, we select some time steps 0 =ty < --- < ty = 1 and reverse the diffusion process by applying the
update rule to obtain x, from x;:

g Ar—A e 11— -
xsza—xt—(l—e‘ s)'OT'Ut'€9(xt7c7t>+05\t7'03\s'Ea 4)
¢ ¢

where s = ty_, and t = ty_,11 at the n-th update step. Here, € is a random standard normal vector sampled at each
inference step. -y is a hyperparameter that controls the stochasticity of the diffusion process. As -y increases, a larger variance
is introduced at a given inference step since o; > 4 fort > s.
A.1. Noise schedules
We utilize two noise schedules—the linear (Ho et al., 2020) and cosine (Nichol & Dhariwall 2021)) schedules.
The linear schedule (Ho et al., [2020)) is defined to be such that at2 increases in a linear fashion with respect to time:

o2 = (0} — o)t +op. ®)
We use the initial and final values o = 0.0001 and o = 0.02 in this work.
We use a slight variant of the cosine schedule (Nichol & Dhariwal, [2021):

oy = cos(at + b) (6)

0

where a = arctan e'® — arctan e 1% and b = arctan e ' are taken so that \;—o = 20 and \,—; = —20.

A.2. Denoising step schedules

Here we list the actual denoising step schedules used at inference time for the generator and cascader/vocoder models. These
schedules have been hand-tuned by trial and error as explained in section4.3.1] The numerical values of the time step sizes
for each model and schedule used for ablation is given in python notation in Table[/| The schedules used for final evaluation
are italicized. Notice for the spectrogram generator, the back-heavy schedule has been modified further for evaluation.
Meanwhile, a plot of the denoising time reached at a given inference step for each model schedule is plotted in Figure [

B. Model architecture

We present some details on the architecture of the models used in the paper. The overall structure of the U-Net has been
depicted in Figure[I] After an entry convolutional layer is applied to the input, the input is passed through a series of

Noise2Music

Table 7. The denoising time steps values for denoising schedules. The schedules selected for use for each model are italicized.

Model Schedule Time steps
‘Waveform generator Front-heavy front_heavy = [0.01 / 200] = 200 + [0.04 / 400] * 400 + [0.15 / 200] * 200 + [0.3 / 150] % 150 + [0.5 / 50] = 50
Back-heavy back-heavy = front_heavy[::-1]
Uniform uniform = [1.0 / 1000] * 1000
‘Waveform cascader Front-heavy ~front_heavy = [0.05 / 400] = 400 + [0.15 / 200] % 200 + [0.3 / 150] = 150 + [0.5 / 50] = 50
Back-heavy back_heavy = front_heavy[::-1]
Uniform uniform = [1.0 / 800] = 800
Spectrogram generator Front-heavy front_heavy = [0.01 / 400] = 400 + [0.04 / 800] = 800 + [0.15 / 400] % 400 + [0.3 / 300] = 300 + [0.5 / 100] = 100
Back-heavy back_heavy = front_heavy[::-1]
Uniform uniform = [1.0 / 1000] = 1000
Back-heavy back_heavy_eval = [0.3 / 50] % 50 + [0.3 / 150] « 150 + [0.2 / 300] = 300 + [0.2 / 500] * 500
Spectrogram vocoder Front-heavy ~front_heavy = [0.05 / 50] = 50 + [0.15 / 30] = 30 + [0.3 / 15] % 15 + [0.5 / 5] % 5
Back-heavy back_heavy = front_heavy[::-1]

Uniform uniform = [1.0 / 100] % 100

Super-resolution cascader ~ Front-heavy —front_heavy = [0.05 / 400] = 400 + [0.15 / 200] * 200 + [0.3 / 150] % 150 + [0.5 / 50] * 50

Denoising time (t)

—— Waveform Generator: Front-Heawvy
Waveform Cascader: Front-Heawy
Spectrogram Generator: Back-Heavy

—— Spectrogram Vocoder: Front-Heavy

] 200 00 600 800 1000
Step

Figure 4. The denoising time reached at a given inference step for the four denoising time step schedules used in the paper. A front-heavy
schedule expends most of its steps near ¢t = 0 while a back-heavy schedule expends most of its steps near ¢t = 1.

down-sampling and up-sampling layers with convolutional blocks in between. Here we expand upon how the convolutional
blocks in the down-sampling/up-sampling portion of the U-Nets are structured, and explain how each network utilized in the
generation pipeline is configured.

B.1. Down-sampling and up-sampling blocks

The model architecture closely follows that of the efficient U-Net (Saharia et al., | 2022b), with two-dimensional convolutional
layers replaced by one-dimensional convolutional layers. There are small differences, which we review here.

As seen in Figure[I] the U-Net model is a mirror image of itself. Given the model depth D, the model employs D down-
sampling and D up-sampling layers, which we may label by I = 1,--- | D. Each down-sampling layer is a one-dimensional
convolutional layer with stride S;. Thus, denoting the feature length and feature dimension of the forward-propagated input
at depth-1 to be Ty and Cy, the down-sampling layer takes an input with (length, channel) dimensions (77_1, C7_1) and
maps it to an output with dimensions (77, Cy) with Ty = Ty_1/S;. The up-sampling layer does the mirror operation, where
an input with (77, C7) dimensions is mapped to an output with (77_1, Cy_1) dimensions, with up-sampling stride S;.

Between the down-sampling and up-sampling layers, “convolutional blocks” of uniform dimension are used. The exact
same block is used for both the down-sampling and the up-sampling portion of the U-Net, and the same number of blocks
are employed at the same depth. The structure of a block is depicted in Figure [5] While all blocks interact with the
time embedding vector—obtained by converting the float into a vector via positional embedding and applying a linear
layer—through the “combine embedding” layer, the self attention and the cross attention layers are only turned on for
selected depths, or not even used at all in some cases. The “combine embedding” layer applies a fully connected layer to the
time embedding to compute a channel-wise scaling and bias vector, which is applied to the input sequence. The self and
cross attention layers include the standard post-attention residual layer with a hidden layer of twice the dimension of C'.

Meanwhile, the entry convolutional layer and the exit convolutional layer both have kernel size 3. The “zeroth” channel
width of the input to the first down-sampling layer and the output of the last up-sampling layer are both set to a “base model
dimension”. The time embedding dimension is also set to this value.

Noise2Music

Time Embedding * CombineEmb

T5 Embedding of

Text Prompt

1

1

1

1

1

1

1

1

:

1

Group Norm + Swish
1

1

1

1

1

:

1

! Cross Attention
1

1

1

I

1

Group Norm + Swish 1 1
1

Convi1D :
FC Layer .

I

Convi1D 1 :

' |

Self Attention :
1

1

1

1

Figure 5. The structure of the convolutional blocks that form the base unit of operation in the 1D U-Nets. The self and cross attention
layers are optional.

Let us now summarize the key hyperparameters that determine the architecture of the network.

¢ Base model dimension
¢ Convolutional kernel size

¢ Depth of the network D

Length-D list of down-sampling factors

Length-D list of number of blocks used at each depth
» Length-D list of bools indicating whether self/cross-attention is used at a given depth

¢ Number of heads used for attention
The rest of the architecture is fixed.

B.2. Model specifications

The architectural parameters of the models used in this paper can be summarized by Table 8]

Table 8. Architectural parameters for the models used in this work.

Parameter Waveform generator Waveform cascader Spectrogram generator Spectrogram vocoder Super-resolution cascader
Base dimension 256 256 256 128 256
Kernel Size 7 7 9 5 7
Depth 6 5 5 4 4
Strides [4,4,4,4,4,4] [4,4,4,4,4] [4,3,2,2,2] [2,4,4,5] [4,4,4,4]
Channels 256 *[1,1,2,3,4,4] 256 *[1,1,2,3,4] 256 *[1,2,2,3,4] 128 *[1, 1,2, 4] 256 *[1,1,2,2]
Blocks [3,3,3,4,4,4] [3,3,4,6,6] [6, 6, 6, 6, 6] [4,4,4,4] [4,4,4,4]
Self Attention [EEETT,T] [E E EFF] [EEET,T] [F, F F, F] [F, F F, F]
Cross Attention [EEETT,T] [EEET,T] [EEET,T] [F, E F, F] [F, F F, F]
Attention Heads 8 8 8 -

C. Prompt template to prime LaMDA model to generate music descriptive text

“Walking on Sunshine” by Katrina & The Waves : The song is a pop / rock song. It has a happy, upbeat mood, with a driving
bassline and a simple, repetitive drumbeat. The song is backed by a synthesizer and a guitar.

“Born This Way” by Lady Gaga : The electropop song is backed by rumbling synth sounds, a humming bass and additional
chorus percussion, with sole organ toward the end. The female singer has a confident and strong voice.

Noise2Music

“Till I Collapse” by Eminem : The song is a hip hop song. It has a strong, aggressive mood, with a powerful, energetic beat.

“My Heart Will Go On” by Celine Dion : The pop song has a sad and heartbroken mood. It contains heavy emphasis on the
instrumental arranging. Usage of Tin Whistle is prominent, backed by melodic use of strings and rhythm guitars. The song
features both acoustic and electronic instrumentation. The female singer’s vocal performance is emotional demanding.

“Me Too” by Meghan Trainor : The pop song is a mid-tempo pop song. It has a happy, upbeat mood, with a driving bassline
and a simple, repetitive drumbeat. The song is backed by a synthesizer and a guitar.

“Nuvole Bianche” by Einaudi : The song is a piano-based classical piece. It has a gentle, melancholy mood, with a soothing,
slow pace.

“Don’t Stop Me Now” by Queen : The energetic rock song builds on a piano, bass guitar, and drums. The singers are excited,
ready to go, and uplifting.

“Strawberry Swing” by Coldplay : The alternative/indie song contains influences from afro-pop and highlife music, and
is built around finger-picked, distortion-free guitars with a heavy bassline and psychedelic synths. It’s a mid-tempo track,
featuring echoing guitars, piano ballad-inspired melodies and bittersweet, anthemic falsetto vocals.

“Mad World” by Gary Jules : The new wave / synth-pop song is backing its male singer with only a set of piano chords, a
mellotron imitating a cello, very light touches of electric piano, and modest use of a vocoder on the chorus.

“A Change is Gonna Come” by Sam Cooke : The soul / R&B song has a reflective, nostalgic mood. The male singer’s voice
is clearly in the foreground, backed by horns, strings, and the timpani carrying the bridge. The French horn conveys a sense
of melancholy.

“Smells Like Teen Spirit” by Nirvana : The alternative rock/hard rock song has quiet verses with wobbly, chorused guitar,
followed by big, loud hardcore-inspired choruses. The overall mood is rebellious and pumped up. The guitar chords are
double tracked to create a more powerful sound.

“Strawberry Fields Forever” by The Beatles : The psychadelic rock song features a reverse-recorded instrumentation,
Mellotron flute sounds, an Indian swarmandal, tape loops and a fade-out/fade-in coda, as well as a cello and brass
arrangement. The vocals are slightly dissonant adding a bittersweet and ominous quality.

{title} by {artist} :

D. AudioSet music labels

AudioSet labels are licensed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.
/m/0z9¢,/m/0Omkg,/m/042v_gx,/m/0fd3y,/t/dd00036,/m/025td0t,/m/01921,/m/018j2,/m/0bm02,/m/018vs,/m/02¢cz_7,/m/03951w,
/m/0gg8l,/m/0155w,/m/0114_3,/m/01ked,/m/015vgc,/m/01xqw,/m/02bk07,/m/0114jd,/m/02mscn,/m/0140xf,/m/01 wy6,/m/0ggqOm,
/m/01lyv,/m/0239kh,/m/01gbl,/m/0ggx5q,/m/02bxd,/m/026z9,/m/02fsn,/m/0283d,/m/02hnl,/m/02k mr,/m/026t6,/m/07s72n,
/m/02sgy,/m/08cyft,/m/021kt,/m/03xq_f,/m/OmOjc,/t/dd00035,/m/0326g,/m/0114j_,/m/02w4v,/m/03191,/m/02x8m,/t/dd00032,
/m/0dwtp,/m/Ombct,/m/0dls3,/m/0342h,/m/03gvt,/t/dd0003 1,/m/03qjg,/m/03m5k,/m/03q5t,/m/031ty,/m/0glt670,/m/03mb9,
/m/05rwpb,/m/03_d0,/m/03r5q-,/m/05148p4,/m/07pkxdp,/m/0j45pbj,/m/04rzd,/m/0dwsp,/m/06j64v,/m/05fw6t,/m/0164x2,
/m/028sqc,/m/0dq0md,/m/0g293,/m/02v21h,/m/05pd6,/m/013y1f,/m/0114md,/m/05r5¢,/m/0fx80y,/m/064t9,/m/0d15d,/m/05w3f,
/m/0516t,/m/05r5wn,/m/06¢qb,/m/06j61,/m/03t31j,/m/07sbbz2,/m/06by7,/t/dd00033,/m/0ln16,/m/06ncr,/t/dd00037,
/m/01hgjl,/m/011412,/m/0114t7,/m/0jtg0,/m/06rqw,/m/06rvn,/m/Ogywn,/m/0114gg,/m/06w87,/m/01156b,/m/02qmj0d,
/m/07s0s51,/m/015y_n,/m/0114qv,/m/01p970,/m/07brj,/m/01glhc,/m/07 gxw,/t/dd00034,/m/02cjck,/m/07kc_,/m/01 1k _j,
/m/02p0sh1,/m/071nk,/m/07c6l,/m/07gql,/m/016622,/m/07xzm,/m/0dwt5,/m/01z7dr,/m/07y_7,/m/0y4{8,/m/04wptg,/m/085jw,
/m/01sm1g,/m/O1bns_

