
A Implementation details

Supplement

A. Implementation details
Label inheritance. Some annotations, such as GO terms and EC numbers, are structured as directed acyclic graphics (which
take the form of simple trees for EC numbers). Typically in such cases the annotation provided on UniProt is the most-specific
that is known. For example if a protein is known to exhibit sequence specific DNA binding (GO:0043565). It will not separately
be annotated with the ancestral term DNA binding (GO:0003677), this is simply assumed from the ontology. Using such an
annotations directly, however, is likely to be problematic in a deep learning setting. Failing to annotate an example with the
parental term demands that the model predict that the example is negative for this term, which is not the effect we want. To
address this our datasets include labels for all ancestors of applied labels for EC, GO and InterPro datasets. In the case of GO
we restrict these to is_a relationships.

Class activation mapping. Many proteins have multiple functional properties. For example we analyse the case of the bifunc-
tional dhfr/ts of T. gondii. Such bifunctional enzymes are often not unique – it is functionally advantageous for these enzymes
to be fused, which facilitates channeling of substrate between their active sites. Since there are a number of such examples
within Swiss-Prot, the mere existence of a TS domain in a protein is (mild) evidence for possible DHFR function. To increase
the interpretability of the network we subtract the activations for other predicted classes from those of the class of interest
during class activation mapping.

Model architecture
To create an architecture capable of receiving a wide range of input sequences, with computational requirements determined for
each inference by the length of the individual input sequence, we employed a dilated convolutional approach (50). Computation
for both training and prediction in such a model can be parallelized across the length of the sequence. By training on full length
proteins, in a multi-label training setting, we aimed to build networks that could extract functional information from raw amino
acid sequences. One helpful feature of this architecture is its flexibility with regards to sequence length. Natural protein
sequences can vary in length by at least three orders of magnitude, but some architectures have computational requirements that
scale with the maximum sequence they are capable of receiving as input, rather than the sequence being currently examined.
These fixed-length approaches reduce efficiency as well as place a hard limit on the length of sequences that can be examined.

B. Input data statistics
We use Swiss-Prot version 2019_01 in our analysis, which gives us 559077 proteins, or 548264 after filtering for only 20
standard amino acids and filtering fragments. Because different protein functions have differing prevalence, we note the

Fold Number of sequences
train 438522
dev 55453
test 54289
all together 548264

Table S1. In our random split of the training data, we allocate about 80% to the training fold, 10% to the development fold, and 10% to the test fold.

Fold Number of sequences
train 182965
dev 180309
test 183475
all together 546749

Table S2. In our clustered split of the training data, we use UniRef50, and allocate approximately equal numbers of sequences to each fold.

number of proteins that have a given function for Pfam, EC, and GO labels, as well as noting the number of labels per protein.
When assigning examples to folds in our clustered dataset, we note that there are test examples that have labels that are never

Sanderson et al. | ProteInfer bioRχiv | 11

Fig. S1. Histogram of number of labels per sequence, including hierarchical labels, on the random dataset.

Fig. S2. Histogram of number of labels per sequence, including hierarchical labels, on the random dataset.

12 | bioRχiv Sanderson et al. | ProteInfer

B Input data statistics

Fig. S3. Number of sequences annotated with a given functional label. (EC class) in the random dataset.

Fig. S4. Number of sequences annotated with a given functional label. (GO label) in the random dataset.

Sanderson et al. | ProteInfer bioRχiv | 13

Fig. S5. Number of sequences annotated with a given functional label. (EC class) in the clustered dataset.

Fig. S6. Number of sequences annotated with a given functional label. (GO label) in the clustered dataset.

14 | bioRχiv Sanderson et al. | ProteInfer

B Input data statistics

seen in the training data. We report these cases below as “Impossible” test example-label pairs.

Type Number
Train labels 3411
Test labels 3414
Impossible test labels 1043
Train example-label pairs 348105
Test example-label pairs 348755
Impossible test example-label pairs 3415

Table S3. Clustered dataset statistics for EC labels.

Type Number
Train labels 26538
Test labels 26666
Impossible test labels 3739
Train example-label pairs 8338584
Test example-label pairs 8424299
Impossible test example-label pairs 11137

Table S4. Clustered dataset statistics for GO labels.

Sanderson et al. | ProteInfer bioRχiv | 15

C. Precision/Recall curves

0.900 0.925 0.950 0.975 1
Recall

0.900

0.925

0.950

0.975

1

Pr
ec

isi
on

Method
BLAST
Blast/CNN-Ensemble
Ensemble of CNNs
Single CNN

(a) EC number prediction: random split

0.6 0.7 0.8 0.9 1
Recall

0.80

0.85

0.90

0.95

1

Pr
ec

isi
on

Method
Blast
Blast/CNN-ensemble
CNN
Ensemble

(b) GO term prediction: random split

0.85 0.90 0.95 1
Recall

0.85

0.90

0.95

1

Pr
ec

isi
on

Method
BLAST
Blast/CNN-Ensemble
Ensemble of CNNs
Single CNN

(c) EC number prediction: clustered split

0.6 0.7 0.8 0.9 1
Recall

0.80

0.85

0.90

0.95

1

Pr
ec

isi
on

Method
Blast
Blast/CNN-ensemble
CNN
Ensemble

(d) GO term prediction: clustered split
Fig. S7. Bootstrapped precision-recall curves for EC number prediction and gene ontology term prediction for random and clustered splits for four methods: BLAST top pick,
single ProteInfer CNN, ensembled ProteInfer CNNs, and ensembled ProteInfer CNNs scaled by BLAST score.

16 | bioRχiv Sanderson et al. | ProteInfer

C Precision/Recall curves

(a) EC number prediction: random split (b) GO term prediction: random split

(c) EC number prediction: clustered split (d) GO term prediction: clustered split
Fig. S8. Full precision-recall curves for EC number prediction and gene ontology term prediction for random and clustered splits for four methods: BLAST top pick, single
ProteInfer CNN, ensembled ProteInfer CNNs

Sanderson et al. | ProteInfer bioRχiv | 17

D. Stratified performance

Fig. S9. Performance of EC model stratified by number of training examples available for each test example.

18 | bioRχiv Sanderson et al. | ProteInfer

E Hyperparameters

E. Hyperparameters
We tuned over batch size, dilation rate, filters, first dilated layer, kernel size, learning rate, number of layers, mean vs max
pooling, and Adam β1, β2 and ε (53) over a number of studies to determine the set of parameters that optimized Fmax. We
found, as in (48), that the network was relatively unresponsive to slight changes in hyperparameters, and found that many of
the hyperparameters that performed well in (48) also performed well for this task. We chose to keep identical hyperparameters
for the EC and GO tasks across both the random and clustered splits for simplicity, and we note that parameters with good
performance on the random task performed respectively well on the clustered split.

CNN
concurrent batches (data parallelism) 8

batch size
40 (per each GPU)

Dynamic based on sequence length
dilation rate 3

filters 1100
first dilated layer 2

gradient clip 1
kernel size 9

learning rate 1.5E-3
learning rate decay rate 0.997

learning rate decay steps 1000
learning rate warmup steps 3000

Adam β1 .9
Adam β2 .999
Adam ε 1E-8

number of ResNet layers 5
pooling mean

ResNet bottleneck factor 0.5
train steps 500000

Table S5. Hyperparameters used in convolutional neural networks. We note that hyperparameters for single-GPU training are available in github.com/
google-research/proteinfer/blob/master/hparams_sets.py.

Sanderson et al. | ProteInfer bioRχiv | 19

github.com/google-research/proteinfer/blob/master/hparams_sets.py
github.com/google-research/proteinfer/blob/master/hparams_sets.py

F. Predicting coarse-grained functional localization with CAM
The goal of this experimental methodology is to measure whether or not we correctly order the localization of function in
bifunctional enzymes. As such, first we have to identify a set of candidates for experimentation.

F.1. Candidate set construction. We note that no functional localization information was available to our models during train-
ing, so we can consider not just the dev and test sets, but instead the entirety of Swiss-Prot for our experimentation. As such, we
take all examples from Swiss-Prot that have an EC label, and convert these labels to Pfam labels using a set of 1515 EC-Pfam
manually curated label correlations from InterPro (81), omitting unmapped labels. We then take the set of 3046 proteins where
exactly two of their ground-truth labels map to corresponding Pfam labels. In our Swiss-Prot random test-train split test set, on
bifunctional enzymes, we get 0.995 precision and 0.948 recall at a threshold of 0.5, so we believe this set is a reasonable test
set for ordering analysis.
We then predict EC labels for these proteins with one of our trained convolutional neural network classifier, considering only
the most specific labels in the hierarchy. Then, we map these predicted EC labels to Pfam labels using the InterPro mapping
again, and retain only the proteins on which we predict exactly two labels above a threshold of 0.5, and are left with 2679
proteins. In 2669 out of 2679 proteins, our predictions are identical to the Pfam-mapped ground truth labels.
We take these 2669 that have two true and predicted Pfam labels, and look at their current Pfam labels annotated in Swiss-Prot.
Of these 2669 proteins, 304 of them contain both of the mapped labels. We note that this difference between 2669 and 304 is
likely due in part to Pfam being conservative in calling family members, potential agreements at the Pfam clan vs family level,
as well as database version skew issues.

F.2. Computation of domain ordering. On these 304 proteins we have the same predicted-EC-to-Pfam labels and the same true-
Pfam labels. For each of these proteins, we can get an ordering of their two enzymatic domains from Pfam, giving us a true
ordering. It is now our task to produce a predicted ordering.
We use class activation mapping (CAM) to compute a confidence for each class at each residue for every protein in this set of
304. We then filter this large matrix of values and only consider the families for which our classifier predicted membership,
giving us a matrix of shape sequence-length by predicted-classes (which is two in this case). For each class, we take the CAM
output and compute a center of mass. Then we order the two classes based on where their center of mass lies.

First domain Second Domain Number ordered correctly Number times seen Percent Correct
EC:2.7.7.60 EC:4.6.1.12 94 94 100
EC:4.1.99.12 EC:3.5.4.25 83 83 100
EC:3.5.4.19 EC:3.6.1.31 59 59 100
EC:1.8.4.11 EC:1.8.4.12 20 20 100
EC:4.1.1.48 EC:5.3.1.24 18 18 100
EC:5.4.99.5 EC:4.2.1.51 12 12 100
EC:5.4.99.5 EC:1.3.1.12 4 4 100
EC:4.2.1.10 EC:1.1.1.25 3 3 100
EC:2.7.7.61 EC:2.4.2.52 0 3 0
EC:2.7.1.71 EC:4.2.3.4 0 2 0
EC:1.1.1.25 EC:4.2.1.10 0 1 0
EC:2.7.2.3 EC:5.3.1.1 1 1 100
EC:4.1.1.97 EC:1.7.3.3 1 1 100
EC:4.1.3.1 EC:2.3.3.9 1 1 100
EC:5.1.99.6 EC:1.4.3.5 0 1 0
EC:1.8.4.12 EC:1.8.4.11 0 1 0

Table S6. Domain architecture diversity in bifunctional enzymes. In Swiss-Prot, there are 16 candidate domain architectures available for our EC functional localization
experiment. Among these all domain architectures with more than 3 instances in Swiss-Prot (7 of them) are 100% correctly ordered by our CAM method.

20 | bioRχiv Sanderson et al. | ProteInfer

G Timing ProteInfer browser models

G. Timing ProteInfer browser models
In the javascript console, we run the following:

var seq = "MEPAKPSGNNMGSNDERMQDYRPDPMMEESIKEILEESLMCDTSFDDLIIPGLESFGLIIPESSNNIESNNVEEGSDGE" +
"LKTLAEQKCKQGNDNDVIQSAMKLSGLYCDADITHTQPLSDNTHQDPIYSQESRIFTKTIQDPRIVAQTHRQCTSSASNL" +
"QSNESGSTQVRFASELPNQLLQPMYTSHNQNANLQNNFTSLPYQPYHDPYRDIESSYRESRNTNRGYDYNFRHHPYRPRG" +
"GNGKYNYYNPNSKYQQPYKRCFTRTYNRRGRGHRSYDCSDRSADLPYEHYTYPNYEQQNPDPRMNNYKDFTQLTNKFNFE" +
"SYDYSMAFSTDSTHVQSDNYNHPTKAQTIPETTKTKKHEATKDNETSTENQVLTPDVISLSYRPSSYKMDIIKKIYDTDV" +
"IPLPKEALTANGSNRDVDIQKYKKAHIRCRSVQKKKERSSQTNKHDENHASSRSDLKERKSNENEDKAVTKARDFSKLNP" +
"LLSPLPLTPEPAIDFADHTDKFYSTPEFNQIQQNLHRSKTSLQDTVPISKHTPRAPTKDNSYKKHHDSKDNYPKMKHSPG" +
"RTTSKKNTTNSNGHQNFKEVSVKNVSGKATSTSPKSKTHHYSSSSDEEGQYKSPVKTIIQSPSPYCKLKNPSIMDKNSAK" +
"NHTASADKNLTDNSPIRSNLNPTAFNKSNSNKSITDSTSNSDECTDRKPNCNSTKNESKDPNRTCGKNSDKHLSKSCTMA" +
"SKRAPSRASSRASSRDSSRASSRASSRASSRDSSRASSRASSRDSSRASSRASSRASSKASSRASSRASSRASSRDSSRA" +
"SSKASSRASSRDSSRASSRASSRASSKASSRASSRASSRASSRDSSRASSKASSRASSRDSSRASSRDSSRDSSRASSRA" +
"SSRDSSRASSKASRKASSRASSRASSRASSKASGKASSEASSRASSRNSSRASSRASSRASSRDSSRASSRASSRDSSRA" +
"SSKASRKASSRASSRASSRELRQIYCDSNKRQTPPHDTSINTKFEISEIKFRCGEDLNFYKNTAARLQCFNHNDQFYNPR" +
"FRPHIRTNRKKSESTNDTDSESSMSRCKSHCRNSPDSLTVVRRKKHKSGSSSISSSIEENCRSNSHIVTGKEKFTPFYYQ" +
"SSRTRSSSSSSSSSASLSCSKSTLKTCRKTQYKDNKQIKSKSDSKHKTTNMSSDYESNRHADVFKNSPEAGEKFPLHNSS" +
"PFNTHEQSNHSENAIDEEQKKAPNITTSHLQGKQNVRLHNTKKCKKKRPRDDDSDSSIKNFCKKRISGAQKTESEVSEPD" +
"DLCYRDYVRLKERKVSEKFKIHRGRVATKDFQKLFRNTMRAFEYKQIPKKPCNEKNLKEAVYDICCNGLSNNAAIIMYFT" +
"RSKKVAQIIKIMQKELMIRPNITVSEAFKMNHAPPKYYDKDEIKRFIQLQKQGPQELWDKFENNTTHDLFTRHSDVKTMI" +
"IYAATPIDFVGAVKTCNKYAKDNPKEIVLRVCSIIDGDNPISIYNPISKEFKSKFSTLSKC"
var t0 = performance.now()
await Promise.all([performECInference(seq), performGOInference(seq)])
var t1 = performance.now()
console.log("Call took " + (t1 - t0) + " milliseconds.")

Sanderson et al. | ProteInfer bioRχiv | 21

	Implementation details
	Input data statistics
	Precision/Recall curves
	Stratified performance
	Hyperparameters
	Predicting coarse-grained functional localization with CAM
	Candidate set construction
	Computation of domain ordering

	Timing ProteInfer browser models

