
Supplementary Material for TokenSplit: Using Discrete Speech
Representations for Direct, Refined, and Transcript-Conditioned Speech

Separation and Recognition

Hakan Erdogan1, Scott Wisdom1, Xuankai Chang2, Zalan Borsos1, Marco Tagliasacchi1, Neil
Zeghidour1, John R. Hershey1

1Google Research
2Carnegie Mellon University

{hakanerdogan, scottwisdom, zborsos, mtagliasacchi, neilz, johnhershey}@google.com,
xuankaic@andrew.cmu.edu

1. Second-Stage Processing
We experimented with adding a second stage similar to Audi-
oLM’s [1] third stage to refine coarse acoustic tokens into fine
acoustic tokens. Another encoder-decoder EncDec2 is used to
generate the fine acoustic tokens given the coarse acoustic to-
kens (and semantic tokens, if available) from the first stage
model for each source i. The computation can be shown as
follows, and is shown in Figure 1:

Â>Q′′

i = EncDec2(Ŝi, Â
≤Q′′

i ).

...

Speaker i
w2v-BERT

tokens

...

Speaker i
coarse

SoundStream

T5 EndDec2

...

Speaker i fine
SoundStream

...

Speaker i full
SoundStream

Speaker i waveform
SoundStream

Decoder
i=1,2

Figure 1: Illustration of stage 2 processing.

If semantic tokens are not available during inference, we
replace them with mask tokens. During training, we used only
the first source to train the second stage model and semantic to-
kens were replaced with mask tokens with 50% probability. We
found that our results did not improve or improved little by us-
ing coarse+fine tokens instead of coarse tokens only. It seemed
first Q′′ = 6 levels of SoundStream model we trained produced
high enough quality for our purposes. We present results from
using fine tokens in Section 3.

2. Masking Probabilities
We used input masking patterns with certain probabilities of
masking certain combination of inputs. A mask pattern has a
value of 1 for an input that is not masked and 0 for an input that
is masked for the inputs W1+W2+Sm+Am that is transcript1,
transcript2, semantic tokens and acoustic tokens of the mixture

signal. As an example, 0011 means two target transcripts are
masked and semantic and acoustic tokens are not masked. For
our basic separation models (variants 1, 2 and 3 below), the
probabilities of mask patterns were 0.55 for 0011, 0.1 for 1100,
1011, 0111 and 1111 and 0.05 for 0000. In addition to the full
masking of each kind of tokens, we also masked a random con-
tiguous segment of each kind with the segment length to full
length ratio randomly chosen between 0 and 0.5. The second
stage model which uses S1 + A1 as input is also trained with
masking pattern probabilities of 0.5 for patterns 11 and 01, that
is input semantic tokens are masked with 0.5 probability. For
stage 2 model, whenever we do not have the semantic tokens
predicted by stage 1 during inference, we just replace the se-
mantic token part with mask tokens.

3. TokenSplit Variants
Here are the TokenSplit variants we considered and experi-
mented with, shown as (input tokens) -> (output tokens).

1. W1 +W2 + Sm +Am -> W1 +W2 + S1 + S2 +A1 +A2

2. W1 +W2 + Sm +Am -> S1 + S2 +A1 +A2 +W1 +W2

3. W1 +W2 + Sm +Am -> A1 +A2 + S1 + S2 +W1 +W2

(default)
4. W1 +W2 +Am -> W1 +W2 +A1 +A2

5. W1 +W2 +Am -> A1 +A2 +W1 +W2

6. Sm +Am -> S1 + S2 +A1 +A2 +W1 +W2

7. Am -> A1 +A2 +W1 +W2

The performance metrics for each variant is provided in Ta-
ble 1. As mentioned in the main text, variant 3 performed the
best. The reason this variant did better than others that first gen-
erate text (variant 1) or semantic tokens (variant 2) could be that
when transcripts or semantic tokens are generated first, the au-
toregressive token generation model can rely on them being ac-
curate and produce acoustic tokens that match them. However,
if there is an error when sampling the transcript or semantic to-
kens, the model ends up generating audio that does not match
with the ground truth input contents. The model is not great in
its ASR performance (as compared to a dedicated ASR model),
so it is expected that this causes higher word error rates.

We see that we obtain much better performance in DNS-
MOS with TokenSplit models as compared to a TDCN++
model, and we get close performance in DWER and DCER
metrics. VISQOL score is not better than TDCN++ but it is
not too much lower and VISQOL may not be the best metric
for evaluating generative model output quality due to possible
frame-level misalignments between ground truth and generated



Table 1: TokenSplit separation results using 7 different vari-
ants on first 3 seconds of the Libri2Mix test set compared to
TDCN++.

Model SI-SNRi DNSMOS VISQOL DWER DCER

Mixture 0.0 3.39 1.50 86.6 62.2
TDCN++ 12.3 2.96 2.11 25.1 14.9
v1 coarse -3.7 3.51 2.03 27.1 15.9
v1 coarse+fine -3.7 3.53 2.03 26.7 15.7
v2 coarse -3.8 3.51 2.01 29.0 17.3
v2 coarse+fine -3.8 3.53 2.01 29.1 17.5
v3 coarse -3.5 3.50 2.04 26.6 15.4
v3 coarse+fine -3.5 3.52 2.05 25.8 14.8
v4 coarse -4.4 3.49 1.84 42.4 26.2
v4 coarse+fine -4.9 3.48 1.73 43.1 26.5
v5 coarse -3.6 3.49 2.03 27.9 16.1
v5 coarse+fine -4.0 3.48 1.90 29.4 17.0
v6 coarse -4.1 3.51 1.98 31.6 19.1
v6 coarse+fine -4.2 3.53 1.98 31.8 19.3
v7 coarse -3.9 3.49 1.98 30.3 17.7
v7 coarse+fine -4.2 3.48 1.86 31.2 18.2

signal. The variant that does not use semantic tokens (variant
5) achieved quite close performance to the best variant. This
may show that semantic tokens are not that important for this
task even though they end up helping a little. Listening tests
also verify the superiority of the TokenSplit generated output as
shown in the paper.

4. Using multiple samplings
In this section, we test how the results change when we use
multiple samplings and choose among them. In addition to the
one sampling we had from the models, we generated two more
samplings from the models and picked the best output based on
DNSMOS metric which does not use any reference signal. The
results are given in Table 2. It can be observed that choosing
best of 3 samplings improve DNSMOS, but does not change
other metrics much, so we just reported the result from a single
sampling.

Table 2: Results comparing single sampled output versus pick-
ing the best of three samplings from the models using DNSMOS.

Model DNSMOS ViSQOL DWER DCER

TokenSplit 3.50 2.04 26.6 15.4
TokenSplit bestof3 3.58 2.05 26.6 15.3
TokenSplitRefine 3.51 2.29 17.2 9.5
TokenSplitRefine bestof3 3.58 2.29 17.2 9.5

5. ASR
We present ASR comparison results for different variants of the
model. The model output transcript is compared with running
the standalone ASR model on the model separated audio signals
in Table 3. We can see that using the model as an ASR model
for mixed speech does not work as well as applying a standalone
ASR model on separated audio signals. We plan to explore and
improve this result in future work.

Table 3: Comparison of ASR performance in terms of differen-
tial WER using the model’s output transcripts and running ASR
on the model’s coarse output sources.

Model DWER DWER(model output)

v1 coarse 27.1 74.4
v2 coarse 29.0 74.6
v3 coarse 26.6 71.9
v4 coarse 42.4 89.2
v5 coarse 28.4 75.5
v6 coarse 31.6 76.3
v7 coarse 30.3 76.0

6. References
[1] Z. Borsos, R. Marinier, D. Vincent, E. Kharitonov, O. Pietquin,

M. Sharifi, O. Teboul, D. Grangier, M. Tagliasacchi, and N. Zeghi-
dour, “AudioLM: a language modeling approach to audio genera-
tion,” arXiv preprint arXiv:2209.03143, 2022.


	 Second-Stage Processing
	 Masking Probabilities
	 TokenSplit Variants
	 Using multiple samplings
	 ASR
	 References

